In NumPy one-dimensional arrays can be indexed, sliced, and iterated over much like lists in Python.
import numpy as np a = np.arange(10)**3 #prints: [ 0 1 8 27 64 125 216 343 512 729] print(a) #prints the third element in the array: 8 print(a[2]) #prints the third element to the sixth element: [ 8 27 64] print(a[2:5]) #inserts -1000 into the array: [-1000 1 -1000 27 -1000 125 216 343 512 729] a[:6:2] = -1000 print(a) #inverts the array: [ 729 512 343 216 125 -1000 27 -1000 1 -1000] print(a[: :-1]) #will return warning: 22: RuntimeWarning: invalid value encountered in power for i in a: print(i**(1/3.)) #prints the folowing: # nan # 1.0 # nan # 3.0 # nan # 5.0 # 6.0 # 7.0 # 8.0 # 9.0
**This article is written for Python 3.6
Multidimensional arrays can have one index per axis.
import numpy as np multiDimArr = np.array([[0,1,2,3], [2,3,4,5]]) print("This is your multidimensional test array:") print(multiDimArr) print("This is the second element in the first array:") print(multiDimArr[0,1])